Young Innovative Leaders of Tomorrow

#ICYMI We are excited to share this once again that ITEX 2017 will be launching the inaugural World Young Inventors Challenge from 11 – 13 May 2017. It is an invention competition to promote the spirit of creativity and inventiveness among young inventors, which is open to all young inventors below the age of 20 years old. The competition is divided into 2 categories i.e. for students aged 13 years old and below, and for students aged 20 years old and below as of 1 January 2017.

All inventions will be evaluated by a team of international judges. Awards include WYIE gold, silver and bronze medals, the Malaysian Young Inventors Exhibition (MYIE) awards for the top 3 Malaysian inventions, the Asian Young Inventors Exhibition (AYIE) awards for the top 3 inventions from Asia and the prestigious Best Young Inventor Award will be awarded to the overall best invention for the World Young Inventors Exhibition.

Wait no further and take your action today, young innovators. Click HERE to register your interest 🙂

WYIE 2017: A Tribute to Junior Inventors

AT ITEX 2017 we are all about paying tribute to the young and brilliant minds of our time. The World Young Inventors Exhibition (WYIE) will return again this year to send out a clear message: everyone has the capacity to invent. The exhibition is set to showcase what a touch of genius can do to an idea regardless of age.

So get ready for excitement to visit WYIE this year! Over hundreds of inventions from 20 countries are expected to be showcased here then!

By the way, here’s a line-up of brilliant junior inventors from around the world who managed to get their playroom ideas out into the real world!

 1) Popsicle

Bet you thought that the good old Popsicle was invented by a multimillion dollar food company when really, it was the brainchild of an 11 year old boy named Frank Epperson. Frank’s idea was in fact accidental and it has got us all thinking “Why didn’t I think of that?”

In 1905, Epperson had left a mixture of powdered soda, water and a stick in a cup on his porch overnight when it was freezing. He woke up the next morning and voila, it was a frozen treat on a stick! He initially called it the “Epsicle,” but the kids at this school kept asking for “Pop’s ‘sicle’ and that is how the name Popsicle was born. He got a patent on it in 1923 and then sold the rights to a bigger company. Today, the brand is owned by Unilever and they sell more than two billion Popsicles every year.

Source: www.greatbusinessschools.org

2) Trampoline

The trampoline was a result of a 16 year old gymnast bouncing off the idea of inventing a device that could help him improve his skills. Iowa native George Nissen visited a circus one day where he saw trapeze artists using safety netting to perform amazing feats. So, Nissen began working in his parents’ garage to develop the kind of bouncing apparatus he had thought up in his mind.

His first successful prototype was constructed while he was a student at the University of Iowa, and it was a big hit when he brought the model to a summer camp. Nissen then began efforts to bring it to the commercial public. The trampoline was named after the Spanish word for diving board – el trampolin. He obtained “Trampoline” as a trademark name for his device.

Source: www.therichest.com

3)  Braille

You might think that an effective system to help the blind read and write would have to be invented by an old but very bright professor. We all thought wrong because it was Louis Braille who invented Braille, an alphabet using raised dots, at the age of 15. Prior to that, each letter was raised and to read, one had to feel out each letter. The books were heavy and took a long time to read. Braille was actually born with sight but became blind at age three after an eye injury. He invented the Braille 5 years after he entered the Royal Institute for the Blind in Paris.

Source: www.kidsdiscover.com

4) Waterskiing

In 1922, an enterprising 18-year-old water-sports enthusiast, Ralph Samuelson, came up with the idea of waterskiing. However, apparatus for the sport was not as sophisticated as what you see today. After trying wooden barrel staves and actual snow skis for skis, he ended up with his own design and bindings made of leather. Samuelson is also credited with the first ski jump using a greased ramp. He spent the next 15 years performing shows and promoting his sport, at one point even being pulled by a World War II flying boat to reach a speed of 80 miles per hour, making him the first speed skier. Unfortunately, he never patented his invention.

Source: www.therichest.com

5) Superman

The inventors of this super hero might come as surprise to many.  Two 18-year-olds who loved comic books and science fiction, Jerry Siegel and Joe Shuster began making cartoons and homemade fanzines while they were still in high school. One of their creations was the caped superhero called “the Superman”. It appeared 1933 as a short story, “The Reign of the Superman.” The idea of Superman however didn’t exactly fly of the shelves.

After developing the character more, they were met with years of rejection — that is until 1938, when National Allied Publications (the precursor to DC Comics) selected it as the cover story for the company’s Action Comics No. 1. In 1939, Siegel and Shuster began the syndicated Superman comic strip; having sold the rights to National, they were never significantly acknowledged for their creation.

Source: www.mnn.com

So, all the above was invented way back in 20th century (1901 – 1999). Get ready for more on what you could explore with us as we move forward to the Digital Era of 21st Century. Come and witness all the new inventions by the young minds at The World Young Inventors Exhibition (WYIE) taking place at ITEX 2017 from 11-13 May 2017. If you are keen on exhibiting at WYIE, CLICK HERE to secure your place now!

 

Image 01 Designed by pressfoto / Freepik www.freepik.com
Image 02 Designed by Fanpop / www.fanpop.com
Image 03 Designed by rsvstks / Freepik www.freeimages.com
Image 04 Designed by Krzysztof (Kriss) Szkurlatowski/ Freepik www.freeimages.com
Image 05 Designed by Maree Waldhuter / Freepik www.freeimages.com
Image 06 Designed by DC Comics / www.dccomics.com

You Need to Know The Next Wave of Wearable Tech

WEARABLE technology has been around for a long time, even though it may not have been in the form that we are accustomed to. A prime example would be calculator watches which were hugely popular in the early ‘80s. Though the idea of combining two or more functions into one gadget did not catch on until much later, at the turn of the century to be precise, wearable technology has progressed a lot since the humble calculator watch.

Wearable technology is not necessarily confined to fitness trackers or smartwatches, it is more than that, given the technological advances with accelerometers, gyroscopes, altimeters, optical heart rate monitors, solar panels, superior batteries and the list goes on and on, you get the picture.

Wearable technology is advancing at such a rate that one would be able to monitor not only one’s physiological condition such as heart rates, movements, sleep patterns, thereby tapping into various biometrics enabling us to take a deeper look into our body’s physiological state but the future promises that we would also be able to monitor our body’s psychological condition.

In 2015, the French football team FC Nantes and French riders in the 2015 Road World Championship had tested an ingestible device, which was jam-packed with sensors that enabled the user to monitor changes in core body temperature from a computer, in real time. This technology could potentially assist athletes to work out the ideal recovery time before another intensive session and base their training plans around that data. It is especially useful to athletes as it does away with the need to wear anything whilst training intensively, thus enabling the athletes to focus on what matters the most, training.

There is another type of device that measures emotions through multiple sensors including a Galvanic Skin Response to detect something called Electrodermal Response, which is deemed to be a great indicator of emotional state. Again, this technology syncs up with your phone and you can monitor your psychological condition, in real time. Further, with the device syncing up with mobile phones, the device can then provide recommendations and advise on how to reduce stress and keep your emotions in check. Wearable technology is not only a means for the modern man to consume large amounts of data regarding one’s body or habits, it also provides real life application in the realm of medicine. Currently, the technology is out there with regard to micro sensors embedded into the single use silicone contact lens. The purpose for the contact lens is to be able to detect subtle pressure changes in the eye, specifically intraocular pressure changes.

This enables a doctor to identify the best time to take those measurements and the correct time to take those measurements are of paramount importance as elevated pressure changes in the eye is linked to optic nerve damage and can cause blindness. With this technology, ailments afflicting the eyes may be a thing of the past. Wearable technology does not stop at merely monitoring how the human body behaves but its applications are limitless. Wearables could be passive devices which are embedded into either clothing or accessories and such passive devices enable the user to interact with other items around them.

For example, a user could have a passive device embedded in an accessory and that passive device interacts with the security system of the user’s home or vehicle. Think about it, you will never ever be locked out of your own home or worry about losing your keys, ever again.

 

Whilst it is premature to predict specific features or form factors that will prevail in the future, wearable tech presents an interesting case study. Never before has computing been small enough to be worn relatively comfortably around the clock on the body, presenting opportunities for breakthrough medical advancements and unfortunately, marketing nuisances.

Battery life of any smart devices is by far the biggest obstacle that prevents broad market adoption and retention. Power consumption of key components like processors, radios, memories, and sensors are the primary culprit in draining our devices. More research would need to be put in in order for battery life to be extended to such an extent that we will only need to charge those devices once a month. The problem faced by wearable technology is that many still use mobile phone parts to make their product. Whilst those parts work wonderfully well for the mobile phones, those parts limit the full potential of wearable technology. Another big area to watch out for is what happens to your information which has been collated by the various devices around you.

You may think that the collation of data may not affect you but what could potentially happen is that the information collated could be used to target marketing campaigns towards you. Though the evolution of hardware for wearable technology is far from perfect, the market is developing software for wearable technology in a frenzy and in the hopes of keeping up with the appetite of the users. Therefore, developing permission based software would be of paramount importance to ensure that the data collated are either disposed of ethically and safely or handled with the utmost integrity. The future of wearable technology can be viewed as scary as it continues to challenge the traditional way we interact with devices around us but there would be no progress if we do not take that chance.

 
Image 01 Designed by creativeart / Freepik www.freepik.com
Image 02 Designed by dashu83 / Freepik www.freepik.com

Charge Your Devices As You Move Your Body

A GROUP of Chinese and American scientists recently developed a fabric that can power wearable devices by harvesting energy from both sunlight and body movements. It can also be made on a standard industrial weaving machine.

The fabric is based on low-cost, lightweight polymer fibres coated with metals and semiconductors that allow the material to harvest energy. These fibres are then woven together along with wool on high throughput commercial weaving equipment to create a textile just 0.32mm thick.

In the journal Nature Energy, the researchers described how they used a layer-by-layer process similar to those employed in the semiconductor industry. Using this method, they coated polymer fibres with various materials to create cable-like solar cells that generate electricity from sunlight and also so-called triboelectric nanogenerators.

 

The nanogenerators rely on the triboelectric effect, by which certain materials become electrically charged when rubbed against another type of material. When the materials are in contact, electrons flow from one to the other, but when the materials are separated, the one receiving electrons will hold a charge.

If these two materials are then connected by a circuit, a small current will flow to equalise the charges. By continuously repeating the process, an alternating electrical current can be produced to generate power.

The material could be used to create larger energy-generating structures, like curtains or tents. The fabrication process should also allow the energy generating materials to be combined with other fibre based functional devices, like sensors.

Next, the researchers plan to focus on improving the efficiency, durability and power management of the textile while optimising the weaving and encapsulation processes to enable industrial-scale production.

Our editors are EXCITED upon hearing this as we can soon ditch away our bulky power-bank. On a last note to all inventors, do share your UNIQUE VALUE PROPOSITION of your invention/ idea in one line in the comment box below.

More Tech-related posts will be up next week, stay tuned 🙂

Image Designed by pressfoto / Freepik www.freepik.com